PHYSICAL REVIEW E

VOLUME 48, NUMBER 3

SEPTEMBER 1993

Scaling properties of soft-core parallel spherocylinders near
the crystal-smectic-phase transition

Keiko M. Aoki and Fumiko Yonezawa
Department of Physics, Faculty of Science and Technology, Keio University,
8-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan
(Received 22 January 1993)

By carrying out constant-pressure molecular-dynamics simulations near the melting transition
from crystal to smectic liquid crystal, we characterize the scaling properties of systems composed
of soft-core parallel spherocylinders. Properties at the transition have a clear dependence on the

length-to-width ratio of the cylinder.

These scaling properties are explained by introducing the

concept of the temperature dependence of the effective core of the spherocylinders. Utilizing these
scaling properties, the equations of state of systems with different anisotropy can be scaled onto one

another.

PACS number(s): 64.70.Md, 64.10.4+h

The seminal computer simulation studies of Alder and
Wainright [1] and Wood and Jacobson [2] showed that
a solid—fluid-phase transition exists even for a system of
hard-core spheres. Later, extensive work was done for
the so-called soft spheres [3-5] which interact through
inverse power pair potentials ¢(r) = e(o/r)™ where
is the distance between the two particles and o can be
defined as the diameter of the spheres. The soft-sphere
model includes hard spheres as its limit when n = oo
[6,7]. These systems are known to have scaling proper-
ties and the equation of state depends only on the single

variable p* = % (ﬁ)s/ ™ defined by temperature T and
the number density N/V, where N is the total number
of particles and V is the volume of the system, which
we will call the reduced density [4,8,9]. Properties such
as the transition densities p}, (melting) and p} (freez-
ing) of the systems composed of soft-core spheres change
systematically depending on the power n [5].

Recently, systems of anisotropic particles have been
widely studied by computer simulations. From these sim-
ulations of anisotropic particles, such as hard ellipsoids
of revolution [10], hard parallel spherocylinders [11,12],
hard spherocylinders [13], and disklike hard cores [14], it
has been shown that a wide variety of liquid crystalline
phase appears. It has also been established that the
anisotropic shape of the repulsive force of the particles
plays an indispensable role for these phases to be stable.

In this work, we choose systems composed of soft-core
parallel spherocylinders and elucidate the existence of
the scaling properties of these systems. The study of
anisotropic particles is interesting not only in relation to
liquid crystals but also in its own right. In particular,
it is important to clarify the effect of anisotropy on the
physical properties at the melting temperature. The pair
potential defining our parallel soft-core spherocylinders is

given by
D n
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where 7;; is the minimum distance between the ith and
jth particles. The long axis of the spherocylinders is
confined to the z axis (L, = Lj) of the simulation box.
To get an intuitive conception of this potential, imag-
ine a hard line of length L covered all over with a blan-
ket of uniform thickness (which is D/2 at the contour
of energy ) which becomes a spherocylinder as a result.
We choose the inverse power n to be 14 which corre-
sponds to a rather “hard” blanket. In this paper, the ef-
fect of the anisotropy of these systems is investigated by
changing the length-to-width ratio (L/D) of the cylinder.
Note that the potential described by Eq. (1) includes soft
sphere as the limiting case, L = 0. The energy is mea-
sured in units of £, the length in units of D, and k is set
equal to unity.

From our experience in simulating systems of
anisotropic molecules, we know that the conventional
molecular-dynamics (MD) method leads to a special sit-
uation with an imbalance in the stress tensor. Especially
in a case when extremely high pressure is acting on the
direction perpendicular to the molecular axis compared
to the pressure along the director, the columnar phase
appears between the solid and the smectic phases [15]
even for systems with only repulsive interaction (though
the columnar phase in such case is not stable under hy-
drostatic pressure). There is a higher probability to be
caught in artifacts when the molecules get longer. It is
important to adopt a method which simulates a situation
under true hydrostatic constant-pressure. The constant-
pressure MD simulation method of Parrinello and Rah-
man [16] gives a correct melting path where the main
data for this work are obtained. After the system melts
and starts diffusing anisotropically, alternative means are
necessary. Methods to overcome this problem have been
proposed in our previous paper [17], where we use method
(i) in this work. The results reported here are for system
size N = 600.

In the L = 0 limit, where the particles are soft-core
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FIG. 1. The reduced transition temperature T FIG. 3. The anisotropy (L/D) dependence of the specific

= Tyn/Tm(L/D = 1) plotted against the length-to-width ratio
L/D of the cylinder for systems of soft-core parallel sphero-
cylinders.

spheres described by inverse power potentials of n = 14,
the solid melts at p}, = 1.094 with (PV/NT),, = 16.46.
At the transition, the density is p; = 1.049 in the fluid
phase. These results fit well with the systematic results
known for other soft-core spheres; these values fall in the
region between the value p}, = 1.194 for the twelfth-
inverse-power potentials and the value p,, = 1.041 for
hard spheres (n = o) [3].

The structure of the smectic phase which we observe
in systems of soft-core parallel spherocylinders has been
studied [17,18], but there is still some question as to how
to relate the phase directly to one of the smectic phases
known in real liquid crystalline material; more extensive
studies need to be carried out.

We first report the transition temperature T, =
Tm/ Tm(L/D = 1) where T,,(L/D = 1) is the melt-
ing temperature for a system of particles of L/D = 1,
as a function of the degree of anisotropy, L/D, of the
cylinder (Fig. 1). The upright triangles (A) denote the
data of the melting temperature obtained from the Par-
rinello and Rahman method. There exists a rather small
hysteresis in this transition from crystal-solid to smectic
liquid-crystal which we denote by the inverted triangles
(v7) for comparison. For molecules of L/D = 4 and 5,
we only present the melting point. As seen in Fig. 1, a
linear relation between T,y and L/D is well maintained
for systems consisting of particles of L/D > 0.5. This
relation can be written as
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FIG. 2. The anisotropy (L/D) dependence of the specific
length l}|,,, parallel to the long axis of the particle at the melt-
ing transition.

length 1, ., perpendicular to the long axis of the particle at
the melting transition.

T3, = oL + T3 (0), (2)

where o ~ 0.5, T)* (0) ~ 0.5. When the anisotropy be-
comes close to the limit L/D — 0, the T}, vs L/D re-
lation deviates from Eq. (2). It is well known from real
liquid crystalline materials that longer molecules have
higher melting temperatures.

It is interesting to introduce the specific lengths [
and I, —which are, respectively, the average interpar-
ticle distances parallel and perpendicular to the long
axis of the particles—by the definitions [} = L; /m and
I, = (L_zL/nJ_)%, with n) being the number of layers
and n; = N/nj being the number of particles in a
layer. These values are related to the specific volume

In Fig. 2 we plot the dependence of the specific length
ljjm at the transition on the degree of anisotropy. A linear
relation is obtained (see Fig. 2) which can be expressed
as

lim = L + Ly (0). (3)

These results come from the fact that the potential of the
particles has a hard line of length L as the long axis. This
shows that the melting starts if there is enough space,
which is about [}|,,,(0) between the cylinders.

The specific length [,,, at the transition is drawn
against L/D in Fig. 3. Note that the specific length
1) .» gets smaller when the particles get more anisotropic.
Here we introduce the concept of the effective core and
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FIG. 4. The value 1/[lm(0)i2,,]™/® drawn against Trm for
different anisotropies where ), (0) = 0.5.
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FIG. 5. The inverse of the reduced transition density 1/p;,
plotted for systems with different anisotropy (L/D).

relate it to specific lengths. When the temperature of the
system is T', the effective core dg of a particle is defined
as the distance at which the neighboring particle feels the
potential energy ®(ds). It is expected that melting takes
place when T' ~ ®(dg) which leads to the relation

T = (i)n. (4)

In other words, we assert that, on the average, neigh-
boring particles can go up the potential wall where the
energy barrier equals the kinetic energy which is T and
the distance at that point is the effective core de. We
assume that the effective core diameter in the direction
of the long axis of the particle is determined only by the
sphere cap at the end of the spherocylinder. Then it
is natural to relate the specific lengths /| and I, to the
effective core dg by the equation

1/3
ds = [(1y — L))" (5)
At the transition, Egs. (4) and (5) lead to the relation
1 n
= . 6
= (o) ©

To show that this relation is satisfied, we draw
1/[lm(0)i2,.]"/? against T, for different anisotropies in
Fig. 4, where we have used /|, (0) = 0.5, and recall from
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FIG. 6. The equations of state of soft-core parallel sphe-
rocylinders L/D = 0.5(0), 2.0(0), 3.0(¢), 4.0 (4), 5.0(v)
scaled on the case for L/D = 1(e).

Eq. (3) that I, — L = Ij»(0). It is seen in Fig. 4 that
Eq. (6) is well fulfilled and our analysis is appropriate.

Finally the inverse of the reduced transition density
1/p%, is plotted as a function of anisotropy in Fig. 5. A
clear linear dependence is observed which can be written
as

1 1
8L 4+ —
P AL+ P (0)’ ™

where 8 ~ 2.0. If we recollect that p* = % (ﬁ)s/n and
V/N =1,l3 , Egs. (3) and (6) will require the coefficients
to be 8 = 1/1},,(0) and p}, (0) = 1.0. Figure 5 ascertains
that these requirements for the coefficients are met.

Utilizing Eq. (7), we are able to scale the equation
of state for L/D = 0.5,2.0,3.0,4.0,5.0 on the plot for
L/D = 1. The results are shown in Fig. 6 where the
values 8 = 2.0 and p||,(0) = 1.0 are adopted.

By making use of these scaling properties we find here,
it becomes possible to derive, from knowledge concerning
the properties of a system composed of soft-core sphero-
cylinders with an arbitrary degree of anisotropy, the be-
havior of a system characterized by any other degree of
anisotropy.
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